DeepStream 6.1.1 Is the release with support for Ubuntu 20.04 LTS
Microsoft Store에서 "Ubuntu 20.04.5 LTS" 설치


WSL은 기본 설치 경로가 사용자 디렉토리다.
(C:\Users\user\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu20.04LTS_79rhkp1fndgsc\LocalState\ext4.vhdx)
Windows 상에서 네트워크 드라이브 연결


Install DeepStream
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Quickstart.html
Quickstart Guide — DeepStream 6.1.1 Release documentation
Quickstart Guide NVIDIA® DeepStream Software Development Kit (SDK) is an accelerated AI framework to build intelligent video analytics (IVA) pipelines. DeepStream runs on NVIDIA® T4, NVIDIA® Ampere and platforms such as NVIDIA® Jetson AGX Xavier™, NV
docs.nvidia.com
dGPU Setup for Ubuntu
NOTE:
This document uses the term dGPU (“discrete GPU”) to refer to NVIDIA GPU expansion card products such as NVIDIA Tesla® T4 , NVIDIA GeForce® GTX 1080, NVIDIA GeForce® RTX 2080 and NVIDIA GeForce® RTX 3080. This version of DeepStream SDK runs on specific dGPU products on x86_64 platforms supported by NVIDIA driver 515.65.01 and NVIDIA TensorRT™ 8.4.1.5 and later versions.
You must install the following components:
- GStreamer 1.16.2
- NVIDIA driver 515.65.01
- CUDA 11.7 update 1
- TensorRT 8.4.1.5
Remove all previous DeepStream installations
To remove DeepStream 4.0 or later installations:
- Open the uninstall.sh file in /opt/nvidia/deepstream/deepstream/
- Set PREV_DS_VER as 4.0
- Run the following script as
$ sudo ./uninstall.sh
Install Dependencies
$ sudo apt -y install \ libssl1.1 \ libgstreamer1.0-0 \ libgstreamer1.0-dev \ gstreamer1.0-tools \ gstreamer1.0-plugins-good \ gstreamer1.0-plugins-bad \ gstreamer1.0-plugins-ugly \ gstreamer1.0-libav \ libgstreamer-plugins-base1.0-dev \ libgstrtspserver-1.0-0 \ libgstrtspserver-1.0-dev \ libjansson4 \ libjson-glib-dev \ libyaml-cpp-dev \ gcc \ make \ git \ python3 python-is-python3
https://docs.nvidia.com/cuda/archive/11.7.1/wsl-user-guide/index.html
CUDA on WSL :: CUDA Toolkit Documentation
Whether to efficiently use hardware resources or to improve productivity, virtualization is a more widely used solution in both consumer and enterprise space. There are different types of virtualizations, and it is beyond the scope of this document to delv
docs.nvidia.com
[OS/Linux] - CUDA 11.7.1 on WSL2
Install TensorRT 8.4.1.5
$ sudo apt-get -y install \ libnvinfer8=8.4.1-1+cuda11.6 \ libnvinfer-plugin8=8.4.1-1+cuda11.6 \ libnvparsers8=8.4.1-1+cuda11.6 \ libnvonnxparsers8=8.4.1-1+cuda11.6 \ libnvinfer-bin=8.4.1-1+cuda11.6 \ libnvinfer-dev=8.4.1-1+cuda11.6 \ libnvinfer-plugin-dev=8.4.1-1+cuda11.6 \ libnvparsers-dev=8.4.1-1+cuda11.6 \ libnvonnxparsers-dev=8.4.1-1+cuda11.6 \ libnvinfer-samples=8.4.1-1+cuda11.6 \ libcudnn8=8.4.1.50-1+cuda11.6 \ libcudnn8-dev=8.4.1.50-1+cuda11.6 \ python3-libnvinfer=8.4.1-1+cuda11.6 \ python3-libnvinfer-dev=8.4.1-1+cuda11.6
NOTE:
- It is assumed, “deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /” has been added, as mentioned in CUDA Toolkit 11.7.1 installation step.
- To install a particular cudnn version e.g. cudnn-8.4.1.50, follow below steps before TensorRT installation:
- Download cuDNN 8.4.1 for Ubuntu 20.04 and CUDA 11.x local repo package from:
https://developer.nvidia.com/compute/cudnn/secure/8.4.1/local_installers/11.6/cudnn-local-repo-ubuntu2004-8.4.1.50_1.0-1_amd64.deb - Run follow commands to install:
- Download cuDNN 8.4.1 for Ubuntu 20.04 and CUDA 11.x local repo package from:
$sudo dpkg -i cudnn-local-repo-ubuntu2004-8.4.1.50_1.0-1_amd64.deb`` $sudo apt-get update $sudo apt install libcudnn8=8.4.1.50-1+cuda11.6 libcudnn8-dev=8.4.1.50-1+cuda11.6
Install librdkafka (to enable Kafka protocol adaptor for message broker)
1. Clone the librdkafka repository from GitHub:
2. Configure and build the library:
$ git clone https://github.com/edenhill/librdkafka.git $ cd librdkafka $ git reset --hard 7101c2310341ab3f4675fc565f64f0967e135a6a $ ./configure $ make make[1]: Entering directory '/home/ym/dev/librdkafka/src' ... Generating linker script librdkafka.lds from rdkafka.h /usr/bin/env: ‘python’: No such file or directory make[1]: *** [Makefile:79: librdkafka.lds] Error 127 make[1]: Leaving directory '/home/ym/dev/librdkafka/src' make: *** [Makefile:20: libs] Error 2 $ whereis python3 python3: /usr/bin/python3.8 /usr/bin/python3 /usr/lib/python3.8 /usr/lib/python3.9 /usr/lib/python3 /etc/python3.8 /etc/python3 /usr/local/lib/python3.8 /usr/share/python3 /mnt/c/Users/jylee/AppData/Local/Microsoft/WindowsApps/python3.exe /mnt/c/msys64/mingw64/bin/python3.10-config /mnt/c/msys64/mingw64/bin/python3.exe /usr/share/man/man1/python3.1.gz #$ sudo ln -s /usr/bin/python3 /usr/bin/python $ sudo apt install python-is-python3 $ make make[1]: Entering directory '/home/ym/dev/librdkafka/src' ... Updating CONFIGURATION.md CONFIGURATION.md.tmp differ: byte 345, line 6 Checking integrity CONFIGURATION.md OK examples/rdkafka_example OK examples/rdkafka_performance OK examples/rdkafka_example_cpp OK make[1]: Entering directory '/home/ym/dev/librdkafka/src' Checking librdkafka integrity librdkafka.so.1 OK librdkafka.a OK Symbol visibility OK make[1]: Leaving directory '/home/ym/dev/librdkafka/src' make[1]: Entering directory '/home/ym/dev/librdkafka/src-cpp' Checking librdkafka++ integrity librdkafka++.so.1 OK librdkafka++.a OK make[1]: Leaving directory '/home/ym/dev/librdkafka/src-cpp' $ sudo make install
If Python3 has been installed, run these commands: whereis python3
Then we create a symlink to it: sudo ln -s /usr/bin/python3 /usr/bin/python
3. Copy the generated libraries to the deepstream directory:
$ sudo mkdir -p /opt/nvidia/deepstream/deepstream-6.1/lib $ sudo cp /usr/local/lib/librdkafka* /opt/nvidia/deepstream/deepstream-6.1/lib
Install the DeepStream SDK
Method 1: Using the DeepStream Debian package
Download the DeepStream 6.1.1 dGPU Debian package deepstream-6.1_6.1.1-1_amd64.deb:
https://developer.nvidia.com/deepstream-6.1_6.1.1-1_amd64.deb
$ sudo apt-get install ./deepstream-6.1_6.1.1-1_amd64.deb ... --------------------------------------------------------------------------------------- NOTE: sources and samples folders will be found in /opt/nvidia/deepstream/deepstream-6.1 --------------------------------------------------------------------------------------- Processing triggers for libc-bin (2.31-0ubuntu9.9) ...
Run the deepstream-app (the reference application)
Go to the samples directory and enter this command:
$ deepstream-app -c <path_to_config_file>
Run precompiled sample applications
1. Navigate to the chosen application directory inside sources/apps/samples_apps.
2. Follow that directory's README file to run the application.
NOTE:
If the application encounters errors and cannot create Gst elements, remove the GStreamer cache, then try again. To remove the GStreamer cache, enter this command:
$ rm ${HOME}/.cache/gstreamer-1.0/registry.x86_64.bin
When the application is run for a model which does not have an existing engine file, it may take up to a few minutes (depending on the platform and the model) for the file generation and application launch. For later runs, these generated engine files can be reused for faster loading.
'C, C++ > DeepStream' 카테고리의 다른 글
Crop and Resize Objects (0) | 2022.11.08 |
---|